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We consider an n-site tandem stochastic production network where each product moves sequentially through the sites, and
the product’s quality deteriorates with its sojourn time in the system. At each site the product goes through two stages: the
first stage is a processing operation with a generally-distributed random duration. This operation either does or does not
conclude successfully; in the latter case, the operation is repeated immediately. Once the processing operation concludes
successfully, the product goes through an inspection stage lasting a generally-distributed random duration. At the end of the
inspection the product’s state is determined as follows: either (i) it requires additional processing and moves forward to the
next site; or (ii) it is found ‘good’ and exits the network with quality value depending on its total sojourn time in the system;
or (iii) it is declared ‘failed’, discarded, and exits the network with zero quality value. Two scenarios are analysed: (i) a new
product enters the system only after the preceding product has exited and (ii) the network is a tandem Jackson-type system.
For each scenario, we construct both time-dependent and quality-dependent performance measures. In the case where the
sites can be arranged in an arbitrary order, we derive easy to implement optimal index-type policies of ordering the sites so
as to maximise the quality rate of the production network.

Keywords: tandem stochastic networks; product quality deterioration; optimal index-type ordering policies; Jackson
networks

1. Introduction

In numerous goods-producing industries, the quality of products deteriorates during the production process. Such industries
include the fresh food industry (Bortolini et al. 2016), the metal processing industry (Naebulharam and Zhang 2013), and
the polymer manufacturing industry (Colledani et al. 2015; Colledani, Horvath, and Angius 2015), among many others. In
such industries, the design of the production system can substantially affect the total time the product resides in the system
– and, accordingly, the final quality of the product (see, e.g. a survey by Inman et al. 2013).

One of several dimensions of production system design is the order of the various operations required to produce a
product (see, e.g. Bortolini et al. 2017; Perlman 2013). Some production environments are flexible, allowing the final
product to be produced according to several different orders of operations (see, e.g. Zhang and Yue 2011). Many studies
on flexible manufacturing systems have examined how system flexibility influences productivity and cost (see De Toni and
Tonchia 1998; Buzacott and Shanthikumar 1993), but few have considered how the order of operations might influence
product quality, despite the prevalence of products that deteriorate over the course of the production process. The current
study further addresses this issue.

A manufacturing flow line can be modelled as a tandem stochastic network with reliable servers or unreliable servers,
where the buffers (storage areas) between servers have either finite or infinite capacity (Dallery and Frein 1993; Avinadav
and Perlman 2013; Perlman, Elalouf, and Bodinger 2014). In this paper, we study an n-site tandem stochastic network,
where each site can be considered as a reliable processing machine. Processing durations as well as inspection durations
are assumed to be variable, and, accordingly, the time period that a product spends at a given site is random. In addition,
it is assumed that, at each site, the processing operation either concludes successfully or does not conclude successfully;
in the latter case, the operation must be immediately repeated until success is achieved (see, e.g. Yechiali 1988; Brandon
and Yechiali 1991). Once a product successfully completes its processing at site i, it is inspected and its state is determined
according to one of three possibilities: (i) the product requires additional treatment and it advances to site i + 1; (ii) the
product is declared as ‘good’ (i.e. acceptable) and it exits the network with a quality value that depends on its total sojourn
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time in the network; and (iii) the product is declared as a ‘failed’ one, discarded and exits the network with zero quality
value.

In what follows (Section 3), we develop a model for the system described, analysing two scenarios: a scenario in which
a product can enter the network only after the preceding product exits (i.e. each product traverses the network alone), and
a scenario in which multiple products can queue at each site. Next, considering the case where the network is flexible (i.e.
that production sites can be arranged in any order) and a product must pass through all sites during production, we seek to
optimise the order of sites so that the network’s quality rate is maximised. It turns out that it is possible to construct easy to
implement index-based ordering policies for the first scenario described above.

2. Literature review

Our work is motivated by various works in the literature that consider the effects of deteriorating product quality in produc-
tion systems (see a review in Naebulharam and Zhang 2014). The classical economic order quantity (EOQ) and economic
production quantity (EPQ) models and their extensions were among the first to incorporate product deterioration in the
evaluation of production processes (Goyal and Giri 2001). Another set of studies considers product deterioration while opti-
mising jointly maintenance and inventory decisions (see a review by Van Horenbeek et al. (2013); Perlman, Mehrez, and
Kaspi (2001); Perlman and Kaspi (2007) Rivera-Gómez, Gharbi, and Kenné (2013) for representative results). Yet, studies
in this vein model the production system as a single (rather than a multi-site) entity and do not address quality deterioration
over the course of the production process; rather, products are assumed to deteriorate only after production is complete (e.g.
while being held in inventory).

Quality deterioration is also addressed in the literature on queueing systems. In these models, quality deterioration may
be represented by impatient customers (see Brandt and Brandt 1999; Movaghar 2006; Altman and Yechiali 2006, 2008 for
representative results). However, studies in this area tend to focus on single-stage queueing systems with a single server
or with parallel servers, and thus can provide only limited insight regarding quality evaluation and optimisation in a multi-
stage production process. In a different setting, a single-processor scheduling problem with deteriorating jobs was studied
in Browne and Yechiali (1990) where a fixed number of N jobs are to be processed on a single machine. While waiting for
processing jobs deteriorate, causing the random processing-time requirement of each job to grow linearly at a job-specific
rate. Optimal scheduling policies that minimise the expected makespan were derived and applications to inventory issuing
policies were discussed.

The probabilistic study of networks of queues has been heavily influenced by the works of R.R.P. Jackson (1954, 1956)
and J.R. Jackson (1957, 1963). The Markovian models developed in these studies – so-called Jackson networks – are
characterised by a product-form solution. Specifically, the multi-dimensional joint probability distribution function of the
site occupancies is given as the product of the occupancy distribution function at each site, as if the sites are not connected.
Recently several studies addressed the issue of quality deterioration in tandem stochastic networks. Shi and Gershwin (2012)
studied a two-machine line in which the waiting time of a part between operations should not exceed a given value in order
to guarantee the quality of the completed part. Naebulharam and Zhang (2014) studied Bernoulli reliability serial Markovian
lines with deteriorating product quality, where a product’s quality depends on its total sojourn time in the buffer. Colledani,
Angius, and Horváth (2014) analysed similar manufacturing systems under lead-time dependent product deterioration. For
two machine lines with Markovian machines, the authors proposed an approach based on the analysis of the system’s steady-
state probabilities and on the derivation of the time to absorption. In a related work, Colledani et al. (2015) developed a
modelling framework to predict the distribution of production lead times in a multi-stage manufacturing system. Products
were assumed to deteriorate over the course of the production process, such that the production lead-time distribution could
be used to compute the system’s performance in terms of production quality. Bouslah, Gharbi, and Pellerin (2018) developed
a model that jointly optimises the production, quality and maintenance control settings for a two-machine production line
in which production quality degrades over time. Our work studies the problem from a different angle by considering the
optimisation of a flexible tandem network, in which the order of operations can be controlled so as to maximise the system
quality rate.

Related stream of research is the design of in-process buffers in industries producing perishable or deteriorating products.
Liberopoulos and Tsarouhas (2002) showed that installation of in-process buffer at a specific point of the line led to a
reduction in failure impact on product quality and an increase of the system’s efficiency. In Liberopoulos, Kozanidis, and
Tsarouhas (2007), the authors focused on the production rate of asynchronous production lines in which machines are subject
to failures. If the failure time of a machine is long enough, the material being processed in the upstream machines must be
scrapped by the system. In Wang, Hu, and Li (2010), a transient analysis was proposed to design the size of the buffers
needed in dairy filling and packaging lines. Recently, Angius, Colledani, and Horvath (2018) studied a production control
policy for unreliable manufacturing systems that aims at maximising the throughput of parts that satisfy a given lead time
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constraint. The authors proposed a state-dependent policy that considers the actual level of the buffer. Our work studies the
installation of in-process buffers from a different perspective. Specifically, we further investigate the effect of buffers on the
system’s quality rate.

3. The model

Consider an n-site tandem stochastic network (TSN), where products move sequentially from site to site, passing 2 stages
at each site, as depicted in Figure 1.

A single processing duration at site i is a generally distributed random variable Bi, with finite mean E[Bi], finite sec-
ond moment, and Laplace-Stieltjes transform (LST) B̃i(θ) ≡ E[e−θBi ], i = 1, 2, . . . , n. A single processing attempt either
concludes successfully, with probability si, or does not conclude successfully, with the complementary probability 1 − si;
in the latter case the operation is immediately repeated, with the same probability of success. Thus, the total processing
time of a single product at site i, Gi, is a Geometric sum of iid random variables (each one distributed like Bi) with mean
E[Gi] = E[Bi]/si and LST given by G̃i(θ) ≡ siB̃i(θ)/1 − (1 − si)B̃i(θ).

Once a product’s processing stage concludes successfully at site i, the product moves to the second stage to be inspected.
The inspection time is a generally distributed random variable, Di, with mean E[Di] and LST D̃i(θ). Upon concluding the
inspection, the state of the product is determined according to one of three possibilities: (i) with probability ai the product
requires additional processing and it advances to site i+ 1; (ii) with probability pi the product is declared to be ‘good’, and
it exits the network with a quality value Qi, depending on the total time it has sojourned in the network, where it is assumed
that the quality of the product deteriorates exponentially with time; and (iii) with probability fi the product is declared as
‘failed’, discarded and exits the network with a zero quality value.

When processing and inspection concludes at the last site, site n, the product is either ‘good’ or ‘failed’. Thus, for
i = 1, 2, . . . , n − 1 we have pi + ai + fi = 1, whereas for i = n, pn + fn = 1. For example, if pi = 0 for i = 1, 2, . . . , n − 1,

that is, the product must pass through all sites, then a good product can be realised only with probability
(∏n−1

i=1 ai

)
pn.

Quality of products that deteriorate as a function of time is usually modelled in the literature as a random variable
subject to e.g. Exponential, Gamma or Weibull distribution function (see a survey of Raafat (1991) and a recent review
in Naebulharam (2014)). In practice, the quality of food products as a function of time may follow an exponential quality
decay function depending on the actual process that is driving the decay. For example, when quality degradation depends
on microbial growth (e.g. fresh meat and fish), the quality degradation follows an exponential quality decay (see, e.g. Rong,
Akkerman, and Grunow 2011). More examples of exponential quality deterioration functions as a function of the residence
time of a product in a buffer are given in Naebulharam (2014).

Let Tj denote a product’s accumulated traversal time from site 1 to j. The quality of a product exiting the network at site
j, is either Qj = δje−γ Tj with probability pj, or zero with probability fj, where δj is the potential quality in case Tj = 0, while
γ is a positive constant that serves as a scaling factor.

We consider two scenarios. Under Scenario 1 the network is a sequential tandem configuration in which each single
product moves from site to site, with no delay between sites, until it exits the network. A real-life example for this scenario
is a situation when there is only one server that performs all the production and inspection stages, so that a new product
can enter the production process only when the server becomes available. Another example is a case with an ample number
of TSN networks so that each product traverses alone in its isolated network. From a theoretical point of view, under this
scenario closed form expressions for the expected quality and for the expected quality rate can be derived for a generally
distributed processing and inspection times. Scenario 2 is the frequently applied tandem Jackson network (TJN) (see, e.g.
Yechiali 1988; Brandon and Yechiali 1991) where each processing stage and each inspection stage is an M/M/1-type queue.
This scenario allows us to model cases where in-process buffers are installed in transfer lines to increase the effective
throughput. In a real-life case study, to improve the performance of food production lines, Liberopoulos and Tsarouhas
(2002) present a cost-effective way of speeding up a croissant-processing line by inserting an in-process buffer-refrigerator
in the middle of the line. Thus, in the current work, we further investigate whether inserting buffers can improve the system’s
quality rate.

Figure 1. Tandem stochastic network.
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3.1. Scenario 1: each product traverses the network alone

Let Ri denote the sum of processing and inspection times of a product at site i. That is, Ri = Gi + Di. Let Tj denote
the accumulated traversal time from site 1 to j, i.e. Tj = �

j
i=1Ri. As the sites are independent, the LST of Tj is T̃j(θ) ≡∏j

i=1 R̃i(θ) = ∏j
i=1 G̃i(θ)D̃i(θ) and its mean is E[Tj] = ∑j

i=1 E[Ri] = ∑j
i=1 (E[Gi] + E[Di])).

Let T denote the total time a product sojourns in the network before exiting (either as ‘good’ or as ‘failed’). Then,

T = Tj w.p.

(
j−1∏
k=1

ak

)
(pj + fj), j = 1, 2, . . . , n, where

0∏
k=1

ak = 1. (1)

Thus, the LST of T is given by

T̃(θ) =
n∑

j=1

((
j−1∏
k=1

ak

)
(pj + fj)

j∏
i=1

R̃i(θ)

)
, (2)

and its mean is

E[T] =
n∑

j=1

(
j−1∏
k=1

ak

)
(pj + fj)

j∑
i=1

E[Ri] (3)

The expected sojourn time of a product exiting the network as ‘good’ is

E[T |good] =

n∑
j=1

(∏j−1
k=1 ak

)
pj

j∑
i=1

E[Ri]

n∑
j=1

(∏j−1
k=1 ak

)
pj

(4)

The quality of a product exiting the network after completing its processing and inspection at site j, is either Qj = δje−γ Tj

with probability pj, or zero with probability fj, where δj is the potential quality in case Tj = 0, while γ is a positive constant
that serves as a scaling factor. It then follows that

E[Qj] = E

⎡
⎣δje

−γ (
j∑

i=1
Ri)

⎤
⎦ = δj

j∏
i=1

R̃i(γ ) (5)

Let Q denote the quality of a product exiting the network (either as good or as failed). Then,

Proposition 1 Under Scenario 1:

The expected quality of a product exiting the network is E[Q] =
n∑

j=1

((
j−1∏
k=1

ak

)
pjδj

j∏
i=1

(
siB̃i(γ )D̃i(γ )

1−(1−si)B̃i(γ )

))

The expected quality rate of the production network is E[Q]/E[T].

Proof Since a product exits the network either as ‘good’ or as ‘failed’, we have

E[Q] =
n∑

j=1

(
j−1∏
k=1

ak

)
pjE[Qj] +

n∑
j=1

(
j−1∏
k=1

ak

)
fj · 0

=
n∑

j=1

(
j−1∏
k=1

ak

)
pjδj

j∏
i=1

R̃i(γ ) =
n∑

j=1

(
j−1∑
k=1

ak

)
pjδj

j∏
i=1

(
siB̃i(γ )D̃i(γ )

1 − (1 − si)B̃i(γ )

)
.

In the case where products travers the network one by one, their exit rate, i.e. the throughput, is 1/E[T]. Thus, the expected
quality rate of products exiting the system is E[Q]/E[T]. �
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3.2. Scenario 2: products queue between sites

Suppose now that the set of processing sites together with the set of inspection sites comprise a tandem Jackson network
(TJN), where each stage is an M/M/1-type queue with unlimited buffer. Consider first the processing stage. Assuming
that a single processing attempt at site i, Bi, is exponentially distributed with mean 1/μi, it then follows that the total
duration of the processing stage, Gi, is exponentially distributed with parameter siμi, LST G̃i(θ) = siμi/(siμi + θ) and
mean E[Gi] = 1/siμi. The arrival rate to processing stage of site i is Poisson with intensity λi = λ

∏i−1
k=1 ak . It follows that

the total sojourn time, Wi, of a product at the processing stage of site i is exponentially distributed with parameter siμi − λi

(see Karlin 1966, 433) with mean E[Wi] = 1/siμi − λi and LST W̃i(θ) ≡ (siμi − λi)/(siμi − λi + θ).
Similarly, the inspection stage at site i is also an M/M/1 queue, with service rate ξi and arrival rate λi. Thus, the sojourn

time Vi of a product there is also exponentially distributed with parameter ξi − λi and LST Ṽi(θ) ≡ (ξi − λi)/(ξi − λi + θ).
The total traversal time of a product from site 1 to j is TTJN

j = ∑j
i=1 (Wi + Vi) and its mean is E[TTJN

j ] =∑j
i=1 (1/(siμi − λi) + 1/(ξi − λi)). Similarly to the derivations of E[T] and E[T |good] for scenario 1, the corresponding

measures, E[TTJN ] and E[TTJN |good] are given, respectively, by Equations (3) and (4), where (1/(siμi − λi) + 1/(ξi − λi))

replaces E[Ri] in both formulas. Since λi = λ
∏i−1

k=1 ak , steady-state is achieved if and only if λi < min{siμi, ξi} for
i = 1, . . . , n.

As in scenario 1, the quality of a product exiting the network after completing its processing and inspection stages at
site j is either QTJN

j = δje
−γ TTJN

j with probability pj, or zero with probability fj. We claim the following:

Proposition 2 Under Scenario 2:
The expected quality of a product exiting the network is

E[QTJN ] =
n∑

j=1

((
j−1∏
k=1

ak

)
pjδj

j∏
i=1

(
siμi − λi

siμi − λi + γ
· ξi − λi

ξi − λi + γ

))

The expected quality rate of the production network is λE[QTJN ].

Proof Replacing R̃i(γ ) in Proposition 1 by (siμi − λi)/(siμi − λi + γ ) · (ξi − λi)/(ξi − λi + γ ) completes the proof of (i).
In a steady-state network, the exit rate equals the arrival rate, λ. Thus, the expected quality per unit of time given in (ii) is
λE[QTJN ]. �

4. Comparing the two scenarios

In this section, we compare the two scenarios when in both cases Bi and Di are exponentially distributed as defined above.
Clearly E[QTJN ] < E[Q] for each individual product. Hence, a sufficient condition for the system’s quality rate under sce-
nario 2, λE[QTJN ], to be lower than that under scenario 1, E[Q]/E[T], is λ < 1/E[T]. Since the above is only a sufficient
condition, we compare numerically the quality rates under the two scenarios.

4.1. Identical sites

Assume that all processing stages are identical and all inspection stages are also identical, and compare quality rates as
function of λ where δi = 1. Let si = 1, μi = 90, ξi = 120, pi = fi = 0.1 for i = 1, . . . , n − 1 and fn = 0.1, pn = 0.9.
Steady state is achieved for scenario 2 when λ < 90. For a simple case where there are only two sites, n = 2, and the
scaling factor is γ = 5, Figure 2 depicts the quality rates and the throughputs of the two scenario. Throughputs are equal
when λ = 28.5. Quality rates are equal first when λ∗ = 30.43 and then when λ∗∗ = 86.5. When λ < λ∗, scenario 1 is better
than scenario 2 since the former expected quality is higher while its throughput is higher or slightly lower than that of
scenario 2. However, when λ∗ < λ < λ∗∗ the production quality rate of scenario 2 is higher than that of scenario 1 since
installing in-process buffers allows the throughput of scenario 2 to increase so that, although expected quality per product is
lower under this scenario, the overhaul quality rate is higher than under scenario 1. When λ > λ∗∗ the TJN is too congested
so that scenario 1 leads to a higher quality rate than that of scenario 2. That is, it is better to let each product traverse the
network alone.

Figure 3 depicts how quality rates vary with incremental changes in the number of sites n and the scaling factor γ .
Specifically, in Figure 3(a) n = 5 and in Figure 3(b) γ = 15, where all other parameters stay the same. As depicted in
Figure 3(a), increasing the number of sites clearly does not affect the throughput of scenario 2 (as long as steady state is
achieved), but reduces the expected quality of each single product. Under scenario 1, both the throughput 1/E[T] and the
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Figure 2. Performance measures as a function of λ. (a) Quality rate. (b) Throughput.

Figure 3. Quality rate as a function of λ. (a) n = 5. (b) γ = 15.

expected quality of a product E[Q] are reduced as n increases, so that the production quality rate decreases. Increasing the
scaling parameter γ reduces the quality rates of both scenarios since now the quality deteriorates faster as a function of the
traversal time as depicted in Figure 3(b). For example, the quality rate in scenario 1 when γ = 5 is about 12 (see solid line
in Figure 2(a)) while when γ = 15 it is close to 9.

4.2. Non-identical sites

Consider a network with two sites having identical inspection rates, ξi = 120, and different failure probabilities, f1 = 0.2 and
f2 = 0.8. The processing times at each site are not identical with rates μ1 = 30 and μ2 = 60 at sites 1 and 2, respectively.
We further assume that the product must pass through both sites and set δi = 1. In this case, when sites are non-identical,
the order at which the sites are arranged affects the quality rate of the production network. Note that when site 1 is the first
in line the maximal rate so that steady state is achieved is λ = 30 (= μ1), whereas when site 2 is the first the maximal rate
so that steady state is achieved is λ = 60 (= μ2), while the arrival rate to the following site is (1 − f2)λ = 12 < 30.
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Figure 4. Quality rate as a function of λ. (a) Site 1 ahead of site 2. (b) Site 2 ahead of site 1.

As depicted in Figure 4(a), when site 1 is ahead of site 2, the production quality rate of scenario 1 is always higher
than that under scenario 2. This result follows since increasing the arrival rate up to the steady-state limit is not enough to
overcome the quality reduction. The quality rates when switching the order so that site 2 is first is depicted in Figure 4(b).
In this case, since λ can be increased up to 60, the quality rate of scenario 2 excides that of scenario 1 when 35 < λ < 52.

This numerical example demonstrates that the quality rate of the production line can be maximised in case a controller
can order the sites and adjust the arrival rate to the network (i.e. the rate of inserting products to the production line).

5. Optimal order of sites

As discussed in the introduction, in flexible production environments the final product can be produced according to several
different orders of operations. Practical examples of operations sequencing can be found in product assembly lines (e.g.
Lee and Tang 1998; Righter and Shanthikumar 2001) and machining operations in the mechanical industry (e.g. Bard and
Feo 1989; Cheung, Song, and Zhang 2017). Examples of flexible production environments in which deterioration takes
place include process job shops in the chemical industry (Dennis and Meredith 2000; Shi, Yue, and Zhao 2014) and in the
pharmaceutical industry (Dogan-Sahiner and Altiok 1998; Stefansson et al. 2011).

In this section, assuming that the order of the n sites can be determined by a controller, the objective is to find an optimal
ordering policy that maximises the quality rate of the production network. It is further assumed that a product must pass
through all n sites (i.e. pi = 0 for i = 1, 2, . . . , n − 1).

Proposition 3 Under Scenario 1 the network production quality rate is maximised when the sites are arranged in a
decreasing order of the index fi/E[Ri].

Proof Applying an interchange argument, it is sufficient to consider the case n = 2 and examine the order (1,2) versus the
order (2,1). The claim is proved since the expected quality E[Q] is identical under each order, whereas E[T] 1,2 ≤ E[T] 2,1 if
and only if f1/E[R1] ≥ f2/E[R2]. �

Under scenario 2, there is no easy-to-implement index-type policy since the effective arrival rate to each site depends
on the order of the sites, which itself affects the corresponding expected quality.

6. Conclusions

The common emphasis when studying and analysing n-site stochastic tandem production networks, such as Jackson-type
systems, is on developing the joint probability distribution function of the site occupancies. Thus far, only a few studies
of multistage production processes have addressed the issue of product deterioration during processing – and those that do
consider it assume that such deterioration is linear over time.

In this paper we focus on the latter issue, assuming that product quality deteriorates exponentially over time. Two sce-
narios are investigated: (i) each product moves through the network on its own, such that a new product starts its processing



8 Y. Perlman and U. Yechiali

sequence only after the preceding product has exited and (ii) the network is a tandem Jackson-type system, where each site
is an unlimited-buffer M/M/1 queue. Analytical expressions for a product’s expected sojourn time in the system and for its
resulting expected quality are derived. Then, under the assumption that a product must pass through all sites and that these
sites can be sequenced in any order, we derive easy to implement index-type ordering rules that maximise the expected
quality rate of the production network. Our results can be utilised when designing similar production-type networks when
quality issues are the leading concern. From a managerial standpoint, since tandem production systems involving prod-
uct quality deterioration are highly prevalent in practice, our study provides an approach to evaluating and optimising the
performance of such systems.

One way to extend this research is by allowing feedback from a site (machine) all the way back to the beginning of the
network. That is, upon unsuccessful operation at any site, the product is fed back to the first site and the entire sequence of
operations starts again. In addition, while it is assumed in this study that each site represents a reliable machine that does
not break, a possible extension is to allow each machine to fail, and to consider the effect of down time and up time of each
machine on the quality value of the final product. A further extension would be to investigate multi-server queues at each
stage.
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